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Abstract

In this study, impedances of SABA BATTERY 6SB6 in different SOCs are applied to obtain the equivalent circuit parameters using Champlin
method in different SOCs. Champlin method answers are used as Zview initial values to get fit results and the Artificial Neural Network (ANN) is
trained by these final results. The presented ANN inputs are SOCs and outputs are equivalent circuit parameters. The completed network responses
are perfectly adjusted to the experimental parameters. Accuracy of this method has been verified by using the measured data and they have shown
a high consistency to experiment. So that a model is extracted in which one can approach an equivalent circuit model with specified parameters

simply by entering the SOC.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamical behavior modeling of electrochemical power
sources is a noticeable issue in simulation of automotive power
systems, photovoltaic systems, electric and hybrid vehicles. Fur-
thermore, battery monitoring and battery management systems
require dynamic battery models, which are continuously adapted
to the battery behavior [1].

For an accurate model of any electrochemical device, one
might employ arigorous theory taking all the factors into consid-
eration, but in practice that becomes too complicated. Therefore,
equivalent circuits may be used to simulate the dynamical behav-
ior of a battery [2]. An equivalent circuit model is an intercon-
nection of electrical elements introduced to represent terminal
characteristics of the battery. The small-signal behavior of an
equivalent circuit model bears a correspondence with the termi-
nal properties of the battery over a band of frequencies. Thus,
arriving at a good model from the Electrochemical Impedance
Spectroscopy (EIS) data continues to be a challenge. Such mod-
els have been described by a number of researchers including
Hampson et al. [3], Willihnganz and Rohner [4], and De Barde-

* Corresponding author.
E-mail address: n_a_monfared @ alum.sharif.edu
(N. Abolhassani Monfared).

0378-7753/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpowsour.2005.11.023

laben [5]. However, none of the above references has presented
means for determining an equivalent circuit model parameters
from a small number of measurements obtained at a few selected
“spot” frequencies [6].

The traditional approach in extracting these equivalent circuit
values is to collect as much EIS data as possible and subject
it to complex nonlinear least squares algorithm. Champlin [6]
identified the importance of sparse observations and proposed a
technique in which by measurement of real and imaginary parts
of impedance of a cell at n (>2) discrete frequencies, one can
evaluate the component values of an equivalent circuit including
2n circuit elements [2].

In other hand, a new approach to modeling batteries is the
Artificial Neural Network (ANN), a parallel, distributed infor-
mation processing technique [7] and particularly suitable to
solving obscure problems. The network consists of processing
elements which are biologically inspired [8]. As in a biolog-
ical system each element or neuron has a limited processing
capability, every neural network model is characterized by its
interconnection of the processing element (neuron) [9].

Neural network is an inductive, or data based model for sim-
ulation of input/output mapping. ANNs require training data to
learn patterns of input/output behavior, and once trained, can
be used to simulate system behavior within that training region.
This can be done by interpolating specified inputs among the



N. Abolhassani Monfared et al. / Journal of Power Sources 158 (2006) 932-935 933

training inputs to yield outputs that are the interpolations of
training outputs. The reason for using ANNs to simulate sys-
tem behavior is that they provide accurate approximations of
system behavior and are typically much more computationally
efficient than phenomenological models. This efficiency is very
important in situations where multiple responses or prediction
computations are required [10].

2. Experimental

The batteries upon which measurements are made are SABA
BATTERY 6SB6 Sealed Lead-Acid Maintenance free batteries.
The charge, discharge and impedance data are obtained with
SOLARTON 1470, a multi-channel Potentio/Galvanostate bat-
tery test system, controlled by solarton cell test™ software.

The impedance spectroscopy sweeps are conducted from
65 kHz to 1 mHz at amplitude of 10 mV. All batteries are tested in
2nd cycle of charge—discharge. During second discharge cycle,
the impedance spectroscopies are done under O current in 18
different SOCs (5-100%). A 2 min rest is allowed in each step.

3. Modeling/analysis of impedance data

The equivalent circuit model used to fit the impedance data is
shown in Fig. 1. The bulk resistance of battery is modeled by the
series resistance R and the two electrodes are modeled by par-
allel resistor—capacitor networks. The series inductor is used to
model the high frequency part of the impedance characteristics.

Choosing different three member groups of frequencies, in
each SOC, the circuit parameters are calculated by applying
Chapman method. In this method, by using the real and imagi-
nary parts of complex impedance of a cell or battery at n discrete
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Fig. 1. The equivalent circuit model used to fit the impedance data.

frequencies, where n is an integer number equal to or greater than
2, one can evaluate components of an equivalent circuit model
comprising 2n electrical elements. By introducing 2z intermedi-
ate variables, the nonlinear equations are made linear and are sys-
tematically solved for the values of the model components [6].

Ineach SOC, the equivalent circuit parameters extracted from
this method are applied as initial values of the equivalent circuit
modeling of Zview software to obtain fit results and error per-
centages. Table 1 depicts the circuit element values and their
error percentages in one of the samples and in four different
SOCs. Fig. 2 also illustrates the impedance curve and its fit-
ting curve by using equivalent circuit model of the same sample
in 95% SOC as an example. Fig. 2 and Table 1 show that this
method could achieve acceptable results. The modified results
of Zview are used as neural network training inputs. For each
SOC the experiments are repeated at least for 10 batteries and
the neural network is trained by these results.

4. Neural network and training

A mathematical model of a two layer neural network is
depicted in Fig. 3 which shows the weight matrices V, W the
firing thresholds v;o, w o (also called bias), the summation of
weighted incoming signals, and nonlinear function o(.). The
inputs are the n signals x1, x2, . . ., x, and the outputs are yy, y7,

. .s Ym» which can be expressed as:

L n

yi=o sz'la Zvljxj +vio | + wio
I=1 j=1

i=1,2,....m

Once the network weight and biases have been initialized,
the network is ready for training. The network can be trained for
function approximation. The training process requires a set of
examples of proper network behavior (network input (x) and tar-
get (v)). During the training the weight and biases of the network
are interactively adjusted to minimize the mean square error.

In this paper, a double-layer neural network has applied in
which the hidden layer is its first layer and the second layer is the

Table 1
Equivalent circuit elements of different SOCs in a sample battery
soc¢ 95% 65% 35% 5%
Elements Value Error (%) Value Error (%) Value Error (%) Value Error (%)
R1 0.038408 0.7346 0.042075 0.8434 0.05073 0.87707 0.09674 2.0013
R2 0.018574 6.4757 0.035201 6.7578 0.03291 5.3427 0.10053 5.4799
R3 0.014971 4.1214 0.022403 4.0087 0.02107 4.69 0.064689 4.8387
L 4.58E-07 1.2793 4.54E-07 1.5744 4.46E-07 1.6237 3.93E-07 3.7812
C2 15.33 11.01 12.62 9.164 4.41 10.015 0.31627 11.58
C3 0.34581 8.2999 0.36551 7.5713 0.13984 9.1969 0.002636 11.371
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Fig. 2. (a) Complex and (b) bode impedance curves and their fit results for 95% SOC.
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Fig. 3. A two-layer network with n input elements and m output.

output layer. The input of this network is SOC of the battery and
its outputs are the battery equivalent circuit parameters including
three resistances, two capacitances and an inductance.

The neural network has trained using 10 similar batteries
in their second cycle of discharge and in 20 different SOCs.
For scaling network inputs and targets, the mean and standard
deviation of the training set are normalized so that they will have
zero mean and unity standard deviation.

In the present study, the neural network has trained using
Backpropagation method [11,12]. The backpropagation method
introduces a value function. While the value function gradient

is 0, the weight of the layer remains constant. Thus the neural
network can approximate the function. The weight in each step
is defined as follow:

dE (k)

vy (k)

vjk + 1) = vi(k) —

where E is the value function, vj;(k) is weight of layer / of neuron
Jjin step k, vj(k+1) is weight of layer / of neuron j in step k+ 1
and 7 is the learning rate which is usually set between 0 and 1.
Error in each step is defined as:

ei(k) =Y () — yi(k)

where Y(/) is target, y;(k) is neural network output in each step
and ¢;(k) is error in each step. In addition the value function is
defined as:

L L
B = 33 0 = 300 — nk))?

=1 =1

To compare the results of neural network with a real battery,

a battery is tested in SOCs in which the neural network had
not been trained. For example, Table 2 depicts a comparison
between the parameters in 45% SOC achieved from experiment
and neural network. As it shows the neural network approxi-
mations have an acceptable accuracy to predict the equivalent
circuit parameters in each SOC.

Table 2
A comparison between artificial neural network and experiment in 45% SOC

R1 R2 R3 L C2 C3
Neural network approximation 0.034702 0.029609 0.015898 4.13E-7 4.843655 0.165896
Experimental 0.0347268 0.029989 0.016086 4.11E-7 4.5396 0.151401
Error (%) 0.070 1.27 1.69 0.459 6.7 9.573
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5. Conclusions

In this paper, a computational model based on the artificial
neural network has been proposed to estimate a battery equiv-
alent circuit parameters of the same group of those batteries
which were used to train ANN by just knowing the SOC, and
without any test requirement. This computational model works
fast and the accuracy of this method verified by using the exper-
iment. The presented method can be extended for other different
equivalent circuit models, and also can be modified to simulate
the battery characteristics by entering other battery parameters.
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