
A

m
t
a
a
s
©

K

1

s
s
t
r
t

m
e
e
i
n
c
e
n
a
S
e
H

(

0
d

Journal of Power Sources 158 (2006) 932–935

Short communication

Prediction of state-of-charge effects on lead-acid battery
characteristics using neural network parameter modifier

N. Abolhassani Monfared a,∗, N. Gharib a, H. Moqtaderi a, M. Hejabi b,
M. Amiri a, F. Torabi a, A. Mosahebi a

a Vehicle, Fuel and Environment Research Institute, University of Tehran, Iran
b Niru Battery Manufacturing Co., Tehran, Iran

Available online 20 December 2005

bstract

In this study, impedances of SABA BATTERY 6SB6 in different SOCs are applied to obtain the equivalent circuit parameters using Champlin
ethod in different SOCs. Champlin method answers are used as Zview initial values to get fit results and the Artificial Neural Network (ANN) is
rained by these final results. The presented ANN inputs are SOCs and outputs are equivalent circuit parameters. The completed network responses
re perfectly adjusted to the experimental parameters. Accuracy of this method has been verified by using the measured data and they have shown
high consistency to experiment. So that a model is extracted in which one can approach an equivalent circuit model with specified parameters

imply by entering the SOC.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The dynamical behavior modeling of electrochemical power
ources is a noticeable issue in simulation of automotive power
ystems, photovoltaic systems, electric and hybrid vehicles. Fur-
hermore, battery monitoring and battery management systems
equire dynamic battery models, which are continuously adapted
o the battery behavior [1].

For an accurate model of any electrochemical device, one
ight employ a rigorous theory taking all the factors into consid-

ration, but in practice that becomes too complicated. Therefore,
quivalent circuits may be used to simulate the dynamical behav-
or of a battery [2]. An equivalent circuit model is an intercon-
ection of electrical elements introduced to represent terminal
haracteristics of the battery. The small-signal behavior of an
quivalent circuit model bears a correspondence with the termi-
al properties of the battery over a band of frequencies. Thus,
rriving at a good model from the Electrochemical Impedance

pectroscopy (EIS) data continues to be a challenge. Such mod-
ls have been described by a number of researchers including
ampson et al. [3], Willihnganz and Rohner [4], and De Barde-
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aben [5]. However, none of the above references has presented
eans for determining an equivalent circuit model parameters

rom a small number of measurements obtained at a few selected
spot” frequencies [6].

The traditional approach in extracting these equivalent circuit
alues is to collect as much EIS data as possible and subject
t to complex nonlinear least squares algorithm. Champlin [6]
dentified the importance of sparse observations and proposed a
echnique in which by measurement of real and imaginary parts
f impedance of a cell at n (≥2) discrete frequencies, one can
valuate the component values of an equivalent circuit including
n circuit elements [2].

In other hand, a new approach to modeling batteries is the
rtificial Neural Network (ANN), a parallel, distributed infor-
ation processing technique [7] and particularly suitable to

olving obscure problems. The network consists of processing
lements which are biologically inspired [8]. As in a biolog-
cal system each element or neuron has a limited processing
apability, every neural network model is characterized by its
nterconnection of the processing element (neuron) [9].

Neural network is an inductive, or data based model for sim-

lation of input/output mapping. ANNs require training data to
earn patterns of input/output behavior, and once trained, can
e used to simulate system behavior within that training region.
his can be done by interpolating specified inputs among the
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raining inputs to yield outputs that are the interpolations of
raining outputs. The reason for using ANNs to simulate sys-
em behavior is that they provide accurate approximations of
ystem behavior and are typically much more computationally
fficient than phenomenological models. This efficiency is very
mportant in situations where multiple responses or prediction
omputations are required [10].

. Experimental

The batteries upon which measurements are made are SABA
ATTERY 6SB6 Sealed Lead-Acid Maintenance free batteries.
he charge, discharge and impedance data are obtained with
OLARTON 1470, a multi-channel Potentio/Galvanostate bat-

ery test system, controlled by solarton cell testTM software.
The impedance spectroscopy sweeps are conducted from

5 kHz to 1 mHz at amplitude of 10 mV. All batteries are tested in
nd cycle of charge–discharge. During second discharge cycle,
he impedance spectroscopies are done under 0 current in 18
ifferent SOCs (5–100%). A 2 min rest is allowed in each step.

. Modeling/analysis of impedance data

The equivalent circuit model used to fit the impedance data is
hown in Fig. 1. The bulk resistance of battery is modeled by the
eries resistance R1 and the two electrodes are modeled by par-
llel resistor–capacitor networks. The series inductor is used to
odel the high frequency part of the impedance characteristics.

Choosing different three member groups of frequencies, in

ach SOC, the circuit parameters are calculated by applying
hapman method. In this method, by using the real and imagi-
ary parts of complex impedance of a cell or battery at n discrete

Fig. 1. The equivalent circuit model used to fit the impedance data.
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requencies, where n is an integer number equal to or greater than
, one can evaluate components of an equivalent circuit model
omprising 2n electrical elements. By introducing 2n intermedi-
te variables, the nonlinear equations are made linear and are sys-
ematically solved for the values of the model components [6].

In each SOC, the equivalent circuit parameters extracted from
his method are applied as initial values of the equivalent circuit

odeling of Zview software to obtain fit results and error per-
entages. Table 1 depicts the circuit element values and their
rror percentages in one of the samples and in four different
OCs. Fig. 2 also illustrates the impedance curve and its fit-

ing curve by using equivalent circuit model of the same sample
n 95% SOC as an example. Fig. 2 and Table 1 show that this

ethod could achieve acceptable results. The modified results
f Zview are used as neural network training inputs. For each
OC the experiments are repeated at least for 10 batteries and

he neural network is trained by these results.

. Neural network and training

A mathematical model of a two layer neural network is
epicted in Fig. 3 which shows the weight matrices V, W the
ring thresholds vi0, wj0 (also called bias), the summation of
eighted incoming signals, and nonlinear function σ(.). The

nputs are the n signals x1, x2, . . ., xn and the outputs are y1, y2,
. ., ym, which can be expressed as:

i = σ

⎛
⎝

L∑
l=1

wilσ

⎛
⎝

n∑
j=1

vljxj + vl0

⎞
⎠ + wi0

⎞
⎠ i = 1, 2, . . . , m

Once the network weight and biases have been initialized,
he network is ready for training. The network can be trained for
unction approximation. The training process requires a set of
xamples of proper network behavior (network input (x) and tar-

et (y)). During the training the weight and biases of the network
re interactively adjusted to minimize the mean square error.

In this paper, a double-layer neural network has applied in
hich the hidden layer is its first layer and the second layer is the
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Fig. 2. (a) Complex and (b) bode impedance c
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Fig. 3. A two-layer network with n input elements and m output.

utput layer. The input of this network is SOC of the battery and
ts outputs are the battery equivalent circuit parameters including
hree resistances, two capacitances and an inductance.

The neural network has trained using 10 similar batteries
n their second cycle of discharge and in 20 different SOCs.
or scaling network inputs and targets, the mean and standard
eviation of the training set are normalized so that they will have

ero mean and unity standard deviation.

In the present study, the neural network has trained using
ackpropagation method [11,12]. The backpropagation method

ntroduces a value function. While the value function gradient
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comparison between artificial neural network and experiment in 45% SOC

R1 R2

eural network approximation 0.034702 0.029609
xperimental 0.0347268 0.029989
rror (%) 0.070 1.27
urves and their fit results for 95% SOC.

s 0, the weight of the layer remains constant. Thus the neural
etwork can approximate the function. The weight in each step
s defined as follow:

lj(k + 1) = νlj(k) − η
∂E(k)

∂νlj(k)

here E is the value function, νlj(k) is weight of layer l of neuron
in step k, νlj(k + 1) is weight of layer l of neuron j in step k + 1
nd η is the learning rate which is usually set between 0 and 1.
rror in each step is defined as:

l(k) = Y (l) − yl(k)

here Y(l) is target, yl(k) is neural network output in each step
nd el(k) is error in each step. In addition the value function is
efined as:

(k) = 1

2

L∑
l=1

e2
l (k) = 1

2

L∑
l=1

(Y (l) − yl(k))2

To compare the results of neural network with a real battery,
battery is tested in SOCs in which the neural network had

ot been trained. For example, Table 2 depicts a comparison

etween the parameters in 45% SOC achieved from experiment
nd neural network. As it shows the neural network approxi-
ations have an acceptable accuracy to predict the equivalent

ircuit parameters in each SOC.

R3 L C2 C3

0.015898 4.13E−7 4.843655 0.165896
0.016086 4.11E−7 4.5396 0.151401
1.69 0.459 6.7 9.573
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. Conclusions

In this paper, a computational model based on the artificial
eural network has been proposed to estimate a battery equiv-
lent circuit parameters of the same group of those batteries
hich were used to train ANN by just knowing the SOC, and
ithout any test requirement. This computational model works

ast and the accuracy of this method verified by using the exper-
ment. The presented method can be extended for other different
quivalent circuit models, and also can be modified to simulate
he battery characteristics by entering other battery parameters.
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